

Tetrahedron Letters 41 (2000) 9781-9785

Regio- and stereoselective synthesis of 2-amino-1-hydroxy-2-aryl ethylphosphonic esters

Henri-Jean Cristau,^{a,*} Jean-Luc Pirat,^{a,*} Marcin Drag^{a,b} and Pawel Kafarski^b

^aLaboratoire de Chimie Organique, UMR 5076 du CNRS, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

^bInstitute of Organic Chemistry, University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Received 29 August 2000; accepted 29 September 2000

Abstract

A highly regio- and diastereoselective synthesis of 2-amino-1-hydroxy-2-aryl ethylphosphonic esters was achieved by opening *trans* 1,2-epoxy-2-aryl ethylphosphonic esters with 28% $NH_{3(aq.)}$ in methanol. © 2000 Published by Elsevier Science Ltd.

Keywords: 2-amino-1-hydroxy-2-aryl ethylphosphonic esters; β -aminophosphonic esters; α -hydroxyphosphonic esters; ammonolysis; 1,2-epoxyphosphonic esters.

Phosphonic acids with heteroatoms in the α and/or β positions have attracted considerable interest because of their use as inhibitors of proteolytic enzymes, such as renin¹ and human immunodeficiency virus (HIV) protease,² as agents affecting the growth of plants³ or as haptens in the development of catalytic antibodies.⁴

The preparation of β -amino- α -hydroxyalkylphosphonic esters **4** can be accomplished in different ways,⁵ but there are only two reports that mention the possibility of obtaining 2-amino-1-hydroxyethylphosphonic acids by the opening of 1,2-epoxyethylphosphonic esters⁶ and no papers record the opening of 1,2-epoxy-2-aryl ethylphosphonic esters.

Herein we report a quite general synthetic approach to compounds 4 starting from various types of alkenylphosphonic esters 2, which are prepared in two ways according to the desired Z or E stereochemistry (Scheme 1).

Standard Horner–Wittig reaction of the tetraethyl methylenebisphosphonate with aromatic aldehydes carried out in an aqueous two-phase system affords the pure (*E*)-isomers of vinylphosphonates 2 in good yields⁷ (Table 1). The same reaction carried out with alkyl or cycloalkyl aldehydes in toluene with sodium hydride also gave the desired (*E*)-isomer of 2^8 (Table 1).

^{*} Corresponding authors. Fax: 33-(0)4-67-14-43-19; e-mail: cristau@cit.enscm.fr; pirat@cit.enscm.fr

^{0040-4039/00/\$ -} see front matter @ 2000 Published by Elsevier Science Ltd. PII: S0040-4039(00)01722-6

Scheme 1. Preparation of compounds 2, 3 (Table 1) and 4 (Table 2)

Table 1								
Preparation	of alkenylphosphonic	esters ${\bf 2}$ and	1,2-epoxyethylphosphonic	esters 3^{a}				

Alkenylphosphonates esters 2			1,2-Epoxyethylphosphonic esters 3				
R	Compound	Yield (%)	³¹ P NMR (CDCl ₃ , ppm)	Compound	Yield (%)	³¹ P NMR (CDCl ₃ , ppm)	³ J _{HH} (HC-HCP, Hz)
Phenyl	2a (E)	68	20.1	3a (trans)	75	17.2	2.4
o-Tolyl	2b (<i>E</i>)	87	20.0	3b (trans)	76	17.2	2.5
<i>m</i> -Tolyl	2c (<i>E</i>)	70	20.2	3c (trans)	64	17.3	2.3
p-Tolyl	2d (<i>E</i>)	92	20.6	3d (trans)	85	17.4	2.3
o-Anisyl	2e (<i>E</i>)	80	21.1	3e (trans)	78	18.1	2.4
α-Naphtyl	2f (E)	83	20.2	3f (trans)	63	17.2	2.3
Phenyl	2a(Z)	70	16.5	3a (cis)	73	17.5	4.6
<i>n</i> -Butyl	2g(Z)	68	17.7	3g(cis)	58	19.6	4.5
<i>n</i> -Butyl	2g(E)	63	19.4	-	_	-	-
c-Hexyl	2h (E)	58	20.4	_	-	_	_

^a All alkenylphosphonic esters **2** and 1,2-epoxyethylphosphonic esters **3** were identified satisfactorily by their ¹H and ¹³C NMR and also by comparison with literature data.

(Z)-Isomers of vinylphosphonate esters were obtained by hydrogenation of appropriate alkynylphosphonate 1a catalyzed by Pd (Lindlar) in MeOH⁹ (Table 1).

Phosphonic esters 2E and 2Z were converted into the corresponding *trans* or *cis* isomers of 1,2-epoxyethylphosphonic esters 3 by the reaction of 2 with dioxirane in a two-phase system according to a previously developed procedure¹⁰ (Table 1). Unfortunately, this method gave no satisfactory results for the (*E*)-isomers of β -alkylsubstituted vinylphosphonates 2g and 2h.

Reaction of 3 *trans* with an 84-fold excess of ammonia (28% $NH_{3(aq.)}$) in MeOH¹¹ gave practically always only one diastereoisomer of the desired product 4,¹² as established by ³¹P NMR.

We have observed high regioselectivity (usually about 95%) for compounds 4 as well.¹³ The position of the hydroxy group in the α position and the amino group in the β position was confirmed by comparison of chemical shifts and coupling constants in ¹³C NMR spectra with the data given in the literature for derivatives of compound 4a and some analogs,⁵ and additionally with simulated values by an ACD-CNMR program.

Concerning the diastereoselectivity, the compounds 4, obtained from the 3 *trans* isomer, are probably the unlike diastereoisomers, in agreement with the expected S_N2 opening of the oxirane by NH₃, corroborated by the literature data of compounds 4.5

We have noticed also that the maximum conversion (usually 50–65%) into 4 (Table 2) was reached after about 24 hours, as established by ³¹P NMR monitoring of the crude reaction mixture. Prolongation of the reaction time because of uncompleted conversion of substrate 3 induces the decomposition of compound 4, so the reaction should be monitored by ${}^{31}P$ NMR and interrupted at the appropriate moment.

	Preparation of 2-amino-1-hydroxyethylphosphonic esters 4 ^a							
4	Reaction time (h)	Conversion (%)	Yield (%)	³¹ P NMR (CDCl ₃ , ppm)	Stereoselectivity (u/l)			
a	24	57	42	23.0	100:0			
b	23	52	44	23.4	100:0			
c	32	54	47	22.8	100:0			
d	22	65	59	23.4	98:2			
e	23	66	53	23.5/23.8	10:90			
f	22	59	53	23.0	100:0			

Table 2

^a All compounds were identified satisfactorily by their ¹H and ¹³C NMR (comparing with simulated values of chemical shifts using the ACD-CNMR program), IR and MS FAB (+).

The same procedure was applied toward (cis)-1,2-epoxyethylphosphonic esters 3, but the reaction was very slow (more than 50 hours), not regioselective, and resulted in poor yields.¹⁴

In conclusion the ammonolysis of *trans* 1,2-epoxyethylphosphonic esters appears to be a valuable synthetic method for the preparation of β -amino- α -hydroxy arylalkylphosphonic derivatives in consideration of its simplicity, applicability and selectivity. The application of this method towards trisubstituted 1,2-epoxyethylphosphonic esters is under investigation.

Acknowledgements

Marcin Drag is grateful to the Erasmus Program for the Ph.D. scholarship at the laboratory of Professor H. J. Cristau at Ecole Nationale Superieure de Chimie de Montpellier.

References

- 1. (a) Dellaria Jr., F.; Maki, R. G.; Stein, H. H.; Cohen, J.; Whittern, D.; Marsh, K.; Hoffman, D. J.; Plattner, J. J.; Perun, T. J. J. Med. Chem. 1990, 534–542. (b) Kafarski, P.; Lejczak, B. Phosphorus Sulfur Silicon 1991, 63, 193-215; Dhawan, B.; Redmore, D. Phosphorus Sulfur Silicon 1987, 32, 119-144.
- 2. Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.; Ruppert, D. Tetrahedron Lett. 1992, 33, 6625–6628.

- 4. Smith III, A. B.; Taylor, C. M.; Benkovic, S. J.; Hirschmann, R. Tetrahedron Lett. 1994, 35, 6853-6856.
- 5. Thomas, A. A.; Sharpless, K. B. J. Org. Chem. 1999, 64, 8379-8385.
- (a) Zygmunt, J.; Walkowiak, U.; Mastalerz, P. Pol. J. Chem. 1980, 54, 233–240; (b) Griffin, C. E.; Kundu, S. K. J. Org. Chem. 1969, 34, 1532–1539.
- 7. Mikolajczyk, M.; Grzejszczak, S.; Midura, W.; Zatorski, A. Synthesis 1976, 396-398.
- 8. Waszkuc, W.; Janecki, T.; Bodalski, R. Synth. Commun. 1984, 1025-1027.
- 9. Lindlar, J.; Dubuis, R. Org. Synth. 1966, 46, 89-92.
- 10. Cristau, H. J.; Yangkou-Mbianda, X.; Gaze, A.; Beziat, Y.; Gasc, M. B. J. Organomet. Chem. 1998, 571, 189–193.
- 11. The synthesis of 2-amino-1-hydroxy-2-aryl ethylphosphonic esters—general procedure Into a Schlenk flask equipped with magnetic stirrer was introduced 2 mmol of the appropriate trans 1,2-epoxy-2aryl ethylphosphonic ester, 10 ml (0.165 M) of 28% NH_{3(aq.)} and 20 ml of MeOH. The flask was closed tightly and the mixture was stirred intensively at room temperature. The progress of the reaction was monitored by ³¹P NMR.

After completion of the reaction, NH_3 and methanol were evaporated from the mixture and 10 ml of distilled H_2O was added to the residue. Extraction of the water phase was achieved by adding 10 ml Et_2O , and then by 5×10 ml CHCl₃. The combined organic layers were dried with MgSO₄, filtered and the solvent was removed under vacuum.

Column chromatography on SilicaGel (70–200 mesh/50 g) using a $CH_2Cl_2/AcOEt$ gradient of 1:1 (150 ml), followed by pure AcOEt (150 ml), and then MeOH/AcOEt (1:4) (200 ml) was used to obtain compound **4**, which was subsequently recrystallized from isopropanol.

12. Solvents and commercially available aldehydes were redistilled prior to use. Tetraethyl methylenebisphosphonate was prepared according to the reported procedure.¹⁵ ¹H and ¹³C NMR spectra were recorded in CDCl₃ at 200.132 and 50.32 MHz, respectively. ³¹P NMR spectra were recorded at 81.0 MHz in CDCl₃. ³¹P NMR chemical shifts are relative to 85% H₃PO₄. FT-IR spectra were recorded in the form of KBr disks using a Perkin–Elmer 377 spectrometer. Mass spectrometry [FAB (+)] was performed at the University of Montpellier II using a DX300-SX102 spectrometer.

4a: ¹H NMR: δ 1.11 (t, J=7.1 Hz, 3H), 1.26 (t, J=7.1 Hz, 3H), 2.68 (bs, 3H), 3.80–4.08 (m, 2H), 4.10–4.18 (m, 3H), 4.34 (dd, J=6.3 Hz, J=19.3 Hz, 1H), 7.25–7.46 (m, aromat., 5H); ¹³C NMR: δ 16.37 (d, J=6.1 Hz), 16.6 (d, J=5.7 Hz), 57.49 (d, J=4.1 Hz), 62.34 (d, J=7.2 Hz), 63.06 (d, J=7.1 Hz), 71.88 (d, J=160.6 Hz), 127.9, 128.0, 128.36, 128.47, 128.61, 141.21 (d, J=5.6 Hz); MS FAB (+)=274.

4b: ¹H NMR: δ 1.09 (t, J=7.1 Hz, 3H), 1.28 (t, J=7.1 Hz, 3H), 2.39 (s, 3H), 2.90 (bs, 3H), 3.87 (m, 2H), 4.10 (m, 3H), 4.57 (dd, J=6.7 Hz, J=20.5 Hz, 1H), 7.12–7.58 (m, aromat., 4H); ¹³C NMR: δ 16.28 (d, J=5.9 Hz), 16.52 (d, J=5.7 Hz), 19.63, 52.67, 62.33 (d, J=7.1 Hz), 63.07 (d, J=7.0 Hz), 70.76 (d, J=162 Hz), 126.22, 126.89, 127.49, 130.4, 136.3, 138.92; MS FAB (+)=288.

4c: ¹H NMR: δ 1.11 (t, J=7.1 Hz, 3H), 1.22 (t, J=7.1 Hz, 3H), 2.34 (s, 3H), 3.51 (bs, 3H), 3.66–4.41 (m, 6H), 7.10–7.28 (m, aromat., 4H); ¹³C NMR: δ 16.36 (d, J=6.1 Hz), 16.58 (d, J=5.7 Hz), 57.35 (d, J=4.6 Hz), 62.44 (d, J=7.2 Hz), 63.2 (d, J=7.2 Hz), 71.4 (d, J=162.1 Hz), 125.03, 128.22, 128.46, 128.8, 138.08, 139.86, MS FAB (+)=288.

4d: ¹H NMR: δ 1.13 (t, J=7.08 Hz, 3H), 1.25 (t, J=7.1 Hz, 3H), 2.33 (s, 3H), 2.74 (bs, 3H), 3.99 (m, 5H), 4.25 (dd, J=6.2 Hz, J=17.2 Hz, 1H), 7.14 (d, aromat., 2H, J=7.9 Hz); 7.29 (d, aromat., 2H, J=8.2 Hz); ¹³C NMR: δ 16.12 (d, J=6.1 Hz), 16.37 (d, J=5.8 Hz), 21.04, 56.69, 62.15 (d, J=7.0 Hz), 62.70 (d, J=6.9 Hz), 71.73 (d, J=160.7 Hz), 127.58, 128.78, 136.92, 138.17; MS FAB (+)=288.

4e: ¹H NMR: δ 1.01 (t, J=7.1 Hz, 3H), 1.30 (t, J=7.1 Hz, 3H), 2.18 (bs, 3H), 3.73 (m, 2H), 3.85 (s, 3H), 4.15 (quin., 2H), 4.33 (dd, J=4.4 Hz, J=6.52 Hz, 1H), 4.58 (dd, J=6.6, J=26.0 Hz, 1H), 6.84–7.47 (m, aromat., 4H); ¹³C NMR: δ 16.03 (d, J=6.0 Hz), 16.42 (d, J=5.6 Hz), 53.02, 55.3, 61.51(d, J=7.3 Hz), 62.83 (d, J=6.9 Hz), 69.71 (d, J=159.2 Hz), 110.4, 120.54, 127.98, 128.36, 129.16, 156.86; MS FAB (+)=304.

4f: ¹H NMR: δ 0.95 (t, J=7.0 Hz, 3H), 1.18 (t, J=7.0 Hz, 3H), 3.17 (bs, 3H), 3.7–4.26 (m, 5H), 4.50 (dd, J=6.0 Hz, J=17.9 Hz, 1H), 7.27–7.88 (m, aromat., 7H); ¹³C NMR: δ 16.11 (d, J=5.9 Hz), 16.38 (d, J=5.7 Hz), 57.48 (d, J=4.4 Hz), 62.27 (d, J=7.1 Hz), 62.83 (d, J=7.2 Hz), 71.72 (d, J=160.9 Hz), 125.77, 125.86, 126.15, 128.0, 128.4, 133.09 (d, J=14.2), 138.96 (d, J=6.6 Hz); MS FAB (+)=324.

- 13. Three phosphorus by-products always accompanied the desired product 4. Two of them were recognized as diand monoethylesters of phosphonic acid and one because of very small yield ($\sim 5\%$) was unidentified.
- 14. Usually between 7 and 11 phosphorus by-products were observed and the yield of the desired product 4 was about 10%.
- 15. Czekanski, T.; Gross, H.; Costisella, B. J. Prakt. Chem. 1982, 324, 537-544.